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Abstract. The Riedel-Wegner phenomenological approach to crossover phenomena is
used to calculate the temperature and molecular-weight dependence of the second virial
coefficient and expansion factor of polymers in dilute solution both near the © temperature
and at higher temperatures. The specific heat maximum of a single polymer chain in
solution is predicted to diverge logarithmically as its molecular weight goes to infinity. The
© temperature is assumed analogous to a tricritical point. It is shown that for problems
involving the interaction of m polymers, one must work with an {m X n)-component field
theory, and then take the limit n 0.

1. Introduction

The properties of polymer chains in dilute solution have been extensively studied both
emperimentally and theoretically for many years. A recent survey is given in the book
by'Yamakawa (1971). Among the main topics of interest are a, the expansion factor of
amisolated polymer and A., the second coefficient in the virial expansion of the osmotic
pressure, and in this paper we shall use renormalization group methods to calculate
!mh ofthem. The © temperature, the temperature at which the polymer chains behave
ideally (and at which A, therefore vanishes), is analogous to a tricritical point (de
Gennes 1975), and the exponents describing the behaviour at the ©® temperature have
lhe_mean-field or random-walk values. At higher temperatures in the good-solvent
égion a critical or non-trivial fixed point becomes dominant with a consequent change
mthe_ values of the exponents. Both @ and A, can be written in terms of crossover
Ctions which interpolate between the ® point and good-solvent regions.
Em?e PlOIymer sol'ution will be taken to be monodisperse, i.e. each polymer has the
% I(Iilo ecular v»;exght, M, corresponding to N flexible units. The molecular weight
Pendence of (S2), the mean-square size of a single polymer chain is

<52)~M2", as M- o0, (1.1)

:‘i‘fmiratures above the © temperature, in the good-solvent region, the exponent
5 ramthe temperatyre of the solution is reduced, (S°) decreases and at the @
mOno;:l:’ \r\"here the short-range repulsive (excluded-volume) interaction between

s is exactly balanced by longer-range attractive forces, the exponent v is
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436 D J Burch and M A Moore

s—the random-walk value (Cotton etal 1974). The expansion factor, a, is defineq by

(8%’ (12

where (§°)g is the mean-square size at the © temperature. For dilute solutions, o g,

be expressed as a universal function of the excluded-volume parameter, 7~ uMM
where u is the effective interaction between the monomers, which varies with tempm_’
ture, T, as (L—0/T) (Yamakawa 1971); i.e.

a2= W(Z). (13)

At the O temperature, z =0 and W(0) = 1, but for large z, in the good-solvent Tegion
W(z)~z*, so as to recover (1.1). ’

The osmotic pressure, I1, of a dilute polymer solution has a virial expansion in the
concentration p (molecules/unit volume) of the polymer:

N=kT(p+Ap*+Asp>+ .. ), (14

where the first term is just the ‘ideal gas’ term. A, would be expected to be proportional
to the volume from which one molecule is excluded by the presence of another, ie.
A,~{(8%*2. In the good-solvent region this is found to be the case and so

A,~M*, as M 0. (13)

However, as the temperature is lowered, A, decreases and eventually vanishes at the 8
temperature. A, may in fact be written as a universal function of z:

A =(S83*f(z) = M*"*X(z). (16)

Near the @ temperature X(z)~z,50 A, ~(1—0/T)M?>. For large z, X(z)~2z"tobe
consistent with (1.5). :

The fact that both (S) and A, can be expressed in terms of two parameters (S
and z) indicates that the details of the structure of polymer molecules are unimportant
in dilute solutions. In concentrated solutions and solids, however, this is not the case and
features, such as side chains, chemical nature, etc (short-range interferences), of the
chains are important.

The layout of this paper is as follows. In § 2 we indicate how the n -0 limit of &8
n-component field theory can be used to model a polymer chain (de Gennes 1972} and
how quantities familiar from magnetic systems are related to polymers (des Cloizeai®
1975). In particular, it is shown that correlation functions of the fields are generatig
functions of polymer properties, and that the field-theoretic Hamiltonian desgnbﬁa
random walk for u = 0 and a self-avoiding walk for u - 0. The generating functions %
written in a form reminiscent of magnetic critical phenomena and the resulting
exponents are shown to have the mean-field values for the random-walk casé (u=0)
We show that the generalization of the original Hamiltonian of de Gennes (1972)10
systems of m polymer chains requires the use of an (m X n)-component field. In §3the
renormalization group approach is discussed. The functions W(z) and X(Z) a;;
interpreted as crossover functions, whose behaviours are governed by 2 tricritical ﬁ_"n
point in the ® temperature region and a critical fixed point in the good-solvent reg“i -
The renormalization group differential recursion relations to order € (where €= b
and d is the dimensionality of space) are written in terms of scaling fields, and, b
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. iting the experimental values of the exponents into them we obtain the
- menological crossover equations proposed by Riedel and Wegner (1974). In § 4
pe "‘;iedel—wegnef method for obtaining thermodynamic quantities from the
»‘;i;,omenological equations is closely followed to calculate A,. Unknown constants
ing in the calculation are determined by matching the result in the © tempera-
e (small-2) region to the results of perturbation theory calculations in z. The
cdoulated values for A, in the good-solvent (large-z) region are then found to agree
vell with experiment. By similar procedures a” is obtained in § 5. The same values of
e constants determined in § 4 are used, and it is found that the first-order perturbation
theory result for «? in z is not correctly obtained. The theory also does not fit the data

icalarly well in the high-temperature region. A discussion of the many possible
reasons for these discrepancies is given. In § 6 the specific heat of a single polymer near
e O temperature is calculated by determining the equation of the critical line from the
renormalization group equations. The specific heat is found to diverge asIn(1—-0/T)in
teinfinite-molecular-weight limit which is in reasonable agreement with some numeri-
ol results of Rapaport (1974). Finally, in § 7, we review the model employed for
reating dilute polymer solutions and the calculations we have presented. In particular,
te phenomenological nature of the Riedel-Wegner equations is highlighted, and the
dfficulties encountered when trying to compare results obtained from them with
emperiment are noted. The role of marginal operators such as the ‘¢® term in three
dimensions is also discussed. In an appendix, we calculate W(z) and X{(z) to order e
wing the results of Nelson and Rudnick (1975). This latter approach seems to have
geater possibilities of systematic extension than that of Riedel and Wegner, although in
low order its asymptotic predictions are in considerable error.

1 »=0 field theory and its magnetic analogy

De Gennes (1972) has shown that the limit n -0 of an n-component field theory is
frmally equivalent to a self-interacting chain, and hence to a single polymer in
whition. Des Cloizeaux (1975) has extended this argument to polymer solutions at
Bermediate concentrations, and shown how the language used to describe magnetic
Stems may also be useful for polymers. F ollowing these authors we construct a lattice
Bode} of the polymer solution, use the n~0 limit and work with functions whose
Properties in the magnetic analogue are well known.

fmmm lattice-model field-theoretic effective Hamiltonian, H, is the O(n) symmetric

i p=

H=~ng=1(izw§ $PST—(1/2) Y il ¢rdT—(u/4) Y ( él (¢f’¢f’)>2
+2 § otht+0(6/5) @.1)

'bef;;here isa field variable, ¢, = (/. . ., &7) at each lattice site, i; B = (kT)™"; (ij)
. nﬂ'S, _all pairs of nearest-neighbour lattice sites; J is the (dimensionless)
& interaction in magnetic language; and 4&; is an applied field.

e : - . v
Hmﬂm;?lcmatxons of polymer properties are performed with the n-component
- .t‘*}" and the limit n - 0 is taken, usually, as the final step in the calculation. In

acts as a generating function parameter; u~(1—®/T) describes the
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interactions between monomers, and the properties of the polymer are given by the
cocfficients of the Taylor series expansion of the correlation functions in J.
As an example, consider the correlation function

XU, w)=3 (61 d])e, 2
7 :
where subscript ¢ denotes the cumulant or connected part. The Taylor expansigy o

xU,u)= NL;O Cu(u)J™ (23)

is the generating function of the partition function, Cn(u), of a polymer of N flexiye
units (de Gennes 1972, Burch and Moore 1976). When u =0, no interactions are
present between the monomers and the chain is free to assume all the configurationsofa
random walk. Thus Cy(0) is just qN , the number of random walks of N steps onalattie
of coordination number q. The value of A in the Hamiltonian is determined by setting
Co(0) =1, which gives A = 1. Thus

x(J,0)=(1-gn™". 24
Even for non-zero u, we expect from the magnetic analogue that the generating
function y(J, u) will be of the form

(T u)~(1=J/T(u), as J > Jo(u), 23
which implies (McKenzie and Moore 1971)

Cn(u)~N"" (I ()™, as N> 0o, (2.6)

where J(u) is the singularity of x(J, u) nearest the origin. For the random walk
J(0)=q 'and y=1.

As u->00, A = —un/6, the chain configurations become restricted to those of a
self-avoiding walk. In this limit the Hamiltonian becomes

H=JY 3 ¢7¢7+3 3 ¢, 1)

(ijy p=1 i p=1

with the constraint at each lattice site, i,
M dPdP=n. ' (28
p=1

It is found by numerical methods that y=2 for the self-avoiding walk in tres
dimensions (Martin et al 1967). .

The calculation of the second virial coefficient involves the interaction of &0
polymer chains. Each chain must be given its own generating function parameter, &
the field theory must be generalized to contain 2n components. For two polymes
labelled ¢ and B, the Hamiltonian becomes

n 2n
H=J,) ¥ ¢f¢f+J, L Y ¢id?

{p) p=1 (ify p=n+1

~0/2% ¥ etst-uanx (£ oten) +3 T 60

i p=1 i

(29

. I ntain M
In general, for systems of m polymer chains, the Hamiltonian must €0
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function parameters and be expressed in terms of an m X n-component field

5 angd Moore 1976).

The following correlation functions may be obtained from a study of the two-
polymer Hamiltonian (2.9):

XU w)= ; ($id))e (2.10)
xUp W) =1 (¢7" 7™ (2.11)
Gl I 1) =1 (8168]03747) @.12)
Gl u)=%j2ﬂ<¢}¢}¢}<¢%>c o (2.13)
GuJp, ) =éi2“<¢?“¢}'“¢2“¢7“)c. (2.14)

xU., u) is independent of Jg in the limit n - 0 and vice versa. Thus the generatirig
fmetions y(J;, u), 8 = & or B, are identical to x(J, u) calculated from the one-polymer

Hamiltonian (2.1).
The three forms of G, are also useful generating functions:

GA(]aa ]Bs u) == Z CM,N(u)JiW]g (2'15)
MN

GuJs, u) = —% an(u)Js. (2.16)
Cun(u) and gu(u) are related by
an(u) =I§0 Crnver(). 2.17)

Weml‘l Cun{u) the ‘two-polymer interaction’ function. It is related to the second virial
weficient, A, of a monodisperse dilute polymer solution by

Ap= CN.N(u)/CIZV<u) (2.18)

MeKenzie and Domb 1967). If the correct dependence of Cyn—y(u)on I and N—1Iis
kaown, thep Cun(u) can be deduced from gy, n(u). Field theories of two interacting
fﬁé?l;ers which do not contain 2n components and do not compensate for this
ncy by the use of the (M +N)th term of the generating function G,(Js, u),
uuce results with the correct exponent dependence, but cannot be relied upon to
WC“’TTW numerical coefficients (Burch and Moore 1976).
(W) and Gy, (u) can be calculated from their generating functions by the inverse

transforms:
1 s, u) ‘
Culw)=5— %"—w%l—dfs, (2.19)
1 Gi(J,, Jo, u)
Cunlu)=—— <§ 2o B dr, dls. (2.20)
(2m)2 J:l+ljg 1 B
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To find o, one introduces the second moment of the pair correlation fype;
I',(J5, u), defined by on,
Tl w) =L R i ;)
R ()

where R;; = R; — R; is the separation vector of sites i and j. The Taylor series expansi
is

T, u)= NZ=0 an(u)Jy, (2.2)

where
an(u)=Y Ri(u), 22

R{u) is the square size of a particular configuration of N flexible units, and the sum
over all such configurations. The mean-square size of a polymer of N flexible unitsis
given by

(R%u)) = an(u)/ Cu(). 04
AS JS -> c(u)3
[2(Js, u)~(1 —Ja/]c(u))_(zvﬂ) 2.25)

where v =3 for the random walk and » =2 for the self-avoiding walk in three dimensions
(Domb 1969). For large N it follows from (2.5), (2.24) and (2.25) that

(R3u))~N%. (2.26)

It should be noted that, in the limit n -> 0, the singularity nearest the origin of all the
generating functions is always J (u).

3. The renormalization group approach

The functions W(z) and X(z) defined by (1.3) and (1.6) for the square of the expansion
factor, o, and the second virial coefficient, A, are typical of situations in which there s
a crossover between the Gaussian fixed point and a non-trivial fixed point. Ther
argument, the excluded-volume parameter, has the general form z ~ uM® where the
crossover exponent ¢, is €/2 for the Gaussian fixed point (Nelson and Rudnick 1975).
which reduces to the value quoted (i.¢. 3) for d = 3. Since u = 0 at the © temperature.é
tricritical or Gaussian fixed point (de Gennes 1975) will govern the behaviour oftpc
crossover functions W(z) and X(z) in the poor-solvent region, that is for smgll_ ;W
the good-solvent, or large-z, region will be dominated by a non-trivial or critt
point. L
The two-polymer Hamiltonian (2.9) may be written in the continuous limit as

1 2n n 2n P ) ¢p(.\')
H=[ax] - £ 9070 v/ -(0/2) § ¢ e 0-Gw/) 5 06
p= p=1 p=n+

2n 2 2n 3|
—(u/4!)(p§=l1 (¢"(x)d>"(x))> + Z=Il ¢"(x)h"(x)], o
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. =(1-J5/10)). (3. 1) is of the form of the anisotropic n-vector model investi-
'wcbﬁ Fisher and Pfeuty (1972). However, the renormalization group differential
ﬁozs for 7, and rg decouple in the n - 0 limit because the terms in the equation for,
hinvolve rgare always multiplied by the factor n. For small r; the equations

hic
g{’,,aa:’d u describing how they change under a renormalization group scale change of
&
tue
9—3—51—)=2rs(l)+Au(l)—Au(l)rs(l)+0(u2(l)) (3.2)
i’é@: eu(l)— Bu*(1) + O(u’(D), | (33)

ehere u has been supposed to be of order €, and A =", B=4x"" (Nelson and
Rudnick 1975). Linearization of these equations about the Gaussian fixed point rf =0,
4*=0 vields eigenvalues 2 and e. Hence the crossover exponent ¢, =€/2 (Fisher
1974).

These equations may be written in terms of the usual scaling fields (Wegner 1972)
pal)=rs()+Au()/(2—€) and (1) = ku(l), where k is a constant:

/a1 = 2p215() = (A/ K pas(Dpall) +(A* ~ AB) /12— €)k*Iu3(1) (3.4
dua(D)/dl = euo(D) ~ (B/K)p3(D). 3.5

Since (3.2) is only correct to order €, we shall neglect the term in u3(I) in (3.4),
dthough for d =3 (e = 1), there is little justification in assuming this term is small.
Without this term (3.4) and (3.5) are of identical form to the phenomenological
equations proposed by Riedel and Wegner (1974) to describe crossover phenomena.
For three-dimensional systems e = 1, and we shall choose B/k =1, so that the critical
fred point is at (u ¥5, u3) = (0, 1). By linearizing (3.4) about the critical fixed point, the
wrelation length exponent, v,, associated with this fixed point is given by (2—A/k)™".
However, we shall follow-the phenomenological approach advocated by Riedel and
Wegner (1974) and ‘adjust’ A to obtain the experimental value of 2 for v.. This is
Huivalent to setting A/k =3. Linearization of (3.4) about the Gaussian fixed point
0,0) gives the mean-field value v, =3.

T{xus the phenomenological equations we shall use to calculate the crossover
fnctions W/(z) and X(z) are

dpars(D)/dl = 2p15(D —3p15(D (D) (3.6)
s/ )1 ), (.7

Where '
w #15(0) = (Jo(u)/ JLON(A = T5/ J(w)), (3.8)
T{u) = J(O)[1+4412(0) + O(3(0))]. | (3.9)
?&:ﬁ(’“s (3.8) and (3.9) follow from the definition of y,5(0) in terms of r5 and u. J{(w)

Value of J; for which r1s=0.
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4. The second virial coefficient

4.1. The partition function, Cy(u)

To obtain Cy(u) we must calculate the generating function y. This is a homogenem,_S
function of the scaling fields u,5 and u, such that

X (115, F—z)=321X(H-1s(l), p2(D)), 43

where the small exponent 7 is neglected as it is of order €, in which case ¥=2v, when
(4.1) follows. ;5 and u, are the starting (! = 0) values of u,5(I) and ().

Equation (4.1) together with (3.6) and (3.7) allow the evaluation of the generating
function x provided it is known at a ‘boundary’ outside the critical region where it cap
be computed by mean-field or some other approximate procedure. We shall take the
boundary at the value of ! =/ for which u,s{/)=1, and assume

x(1, pa(D)=x 42
where ,{; is a constant independent of p,z(f) Inamore reﬁn;d approximation one might
replace the right-hand side of (4.2) by a power series in u,(/). Then, at the boundary

X1, p2) = €%, 83)

[ may be determined in terms of p,5 and u, by solving (3.6) atl = [, which reducesto
solving either

fCuis) =1+ CLlPf(CL ) (44
with :

F(Cus) = mi82(1—pr) 0 €, )
or

flCui) = A+ C3fLCi ) (49)
with

folCons) = pid*ud % e, @n
where

Cours= t1a()(A = 2D ()2 “8)

is a renormalization group invariant, i.e. dC,,,/dI=0. .
Near the Gaussian fixed point, C,,>» 1. In this limit (4.4) can be expanded in

powers of C,1/%. Substitution in (4.5) then gives

of = uis (1~ ) (1 HCL+O(CLL)). )
Similarly, near the critical fixed point C,,,,« 1, and (4.6) and (4.7) produce

e = widui 1+ O(CEY). @10
Inserting (4.9) and (4.3) and performing the inverse Laplace transform (2.19),we findin
the poor-solvent region (that is, near the ® temperature)

o= () o (i rgerowd)
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where
X =0/ Tu)(1— o)~ *p N2, 4.12)

Gilarly in the good-solvent region, we obtain from (4.10), (4.3) and (2.19)

TN gus N 2T(1-2)
Cs(u)=(}z,7)) J(w)"T(1-2) (1 *+3 ['(0-6)

x6/5+0(x—‘2/5)). (4.13)

The expression for Cn(u) in (4.13) is of the form (2.6) but with v, =$ rather than the
aperimental value of Z. The discrepancy arises because we have set 7 =0 and so

7::2;’5'

42, The two-polymer interaction function, Cyn(u) -

The calculation of Cyn(u) is similar to that for Cy(u), but is complicated by the

nce of the two scaling fields wy, and p,5. To clarify the situation we define new
vriables P() = (1 (D1 (1)Y? and A()= pyo () — p14(1), both of which satisfy the
diferential equation (3.6). G, is a homogeneous function of the variables P(I), A(I) and
pll), with

Gy(P, A, ) ="' Gy(P(1), A(), p2(0)), (4.14)

when the small exponent 7 is neglected. (In general, G, diverges as §(4+d'2"), &>
when J, = Jp, where & = the ‘coherence’ lengzh.)
Wetake the boundary at ] = | given by P() = 1, and assume that, at this boundary,

G4(1’A’(l_)£’~2(l_))= G4“2(l_)s (4.15)

where G, is a constant independent of A(T) and (). This boundary value for G, can
I}N‘:nvisaged as being the leading term of a series in u,(1) and A(I). It is not easy to
Jutfy (4.15) except for the special case A =0, when J, and J, are small and equal, so

GL, A(T), (1)) becomes proportional to the ‘bare’ coupling constant in the Hamilto-
uan and hence to u,([). At the boundary (4.14) and (4.15) give

Gu(P, A, ) =" Gapun(]). (4.16)

In.a similar fashion to the calculation of Cy(u), the solutions of the differential
Huation (3.6) for P(I) can be expressed near the Gaussian fixed point as

e‘_=.P'1/2(1 — )1 +%C;1/2+O(C;1)],/ : . 4.17)
vith
Co=P()(1~ (a2, (4.18)

which ; N I
chis also 2 renormalization group invariant.

uss'e value of (]} is obtainable from (4.18) for both large and small Cp. Near the
1an fixed point (at which Cp» 1) one finds

D)= CpV1-3C72+ O(CHNL. (4.19)
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Inserting (4.17) and (4.19) into (4.16) and performing the Laplace transforn 220 we
obtain, in the poor-solvent region;

- J(0) 464#2(1"#2)1/31\[2 _1_ I'2) \? 5
Gt =(77) IR 143 (Fa ) x+ou3).

A similar treatment for the good-soivent region (Cp « 1) yields

_ (IO _Gapi PN T 2/T(201)
Crnlu) = (Jc(u)) ) TR [1 *3 (F(I-S)

{4.20)

2
) X—6/5+0(X-12/5)]. (421)
4.3 The second virial coefficient, A,

A, for a monodisperse solution is calculated in the poor-solvent region by inserting
(4.20) and (4.11) into (2.18). Thus near the ® point

G4(Jc(0)\2 —1/3 \72 2
== - N7[1~0-4926X +
A= (T ) mllm ) INTI-04926X 40X @z
In the good-solvent region, (4.21), (4.12) and (2.18) yield
~ -3/10 .
A,= 0-7698%(%) w3 AN [140-0117X %+ O(X¥9)]. (4.23)

Equations (4.22) and (4.23) are not in the crossover form of (1.6), unless we replace
(1—p,) by 1—even in the good-solvent region. We view the experimental evidence for
(1.6) as a strong argument that u, = ku <« 1, in which case J.(u) = J(0)+O(u,). Near
the ® temperature, setting B, = A,N,,/M? where N, is Avogadro’s number, one has

B,M"?/z=D(1~2-865z +O(z?)), z<0-1, (4.24)

where D is a constant and z = bu,N'/2. The constant, b, has been adjusted so that the
coefficient of z in (4.24) is the value derived from perturbation theory (Yamakawa
1971, § 21a). Using this value of 5(= 0-1719) in (4.23) produces, for the good-solvent
region

B,M'?/2=0-381Dz%°[1+0-00142~*° + O(z"*¥/%)], z2>0-75. 4.23)

Equations (4.24) and (4.25) are both asymptotic expansions. The sizes of the successive
terms in (4.24) are such that it is only valid for z<0-1. Inclusion of higher ferms n
(4.25) would only be justifiable when z>9, .

Figure 1isaplotof X(z)/z(= B,M"?/Dz) against z. Also shown is the gxperimet-
tal data for polystyrene in decalin (Berry 1966) and the internally consistent now
renormalization group calculations of Flory and Krigbaum (1950) and Orifino 20
Flory (1957), its modification by Stockmayer (1960), and of Kurata et a (1964)»
Yamakawa (1968) and Yamakawa and Tanaka (1967). (All of these theories ﬁ
summarized by Yamakawa (1971).) The small discrepancy at large z is partly d_ue ©
crudeness of the boundary conditions (4.2) and (4.15), which are only the lga.dmg terms
of series expansions. Notice-also that improvements in the boundary conditions ¥ at
alter the value of the constant b. Another possible source of the small d,sc.repaf“;ym
large z is that the relation u ~ (1 — ®/T), assumed by Berry (1966) in Prese”tmghls
may not be valid when T is not close to ® (Yamakawa 1971, p 375).
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X))z

00 2 . . 4

Figare 1. Plot of X(z)/z against z. The data points are for polystyrene in decalin (Berry
1966). The broken curve is an interpolation of (4.23) and (4.24) for 0-1<z<0-75. Also
shown for comparison are the results of the theories of Flory and Krigbaum (1950) and
Orifino and Flory (1957), curve A; its modification by Stockmayer (1960), curve B; and of
Kurata et al (1964), Yamakawa (1968) and Yamakawa and Tanaka (1967), curve C.

5, The expansion factor

5.1 The mean-square size, (R2(u))

The correlation function I',, needed to obtain (R3(u)), will also be a homogeneous
function of the scaling fields:

Ta(ks, w2) =¥ Talu1s(D), pa(1)), (5.1

where‘the small exponent 7 is again neglected (see (2.25)).
| }{smg the Riedel-Wegner procedure, the boundary value for x(p;5(1), pa(1)) at
=11 taken as

L1, po(f)) =T, (5.2)

where T is a constant, which again might represent the leading term of a series in g, ) ).
ﬁmn}e calculati-on of ax(u), defined by (2.22), now follows exactly that of the partition
on Cy(u) in § 4.1. In the © temperature region

_ (J0N2 D1 —pp)”°N( . 2 T(2) 2 ’
ax{u) (]c(u)> U)'TQ) (“3 o5 < TOX ))’ (5-3)
Wile at higher temperatures
af= (L0 Toud*N"° ( 4TQ4) s o1

(Jc(u)) (Jc(u))NF(2-4)(1 STag X HoXT) G4

Rn: ]
ﬂu(h;(cl)‘)b) mboth regions may now be found by dividing the expressions (5.3) and (5.4) for
¥ (4.11) and (4.13) for Cy(u) respectively, according to (2.24).
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5.2. The square of the expansion factor, a’
The value of (R2{u)) at the © temperature has the form
2 .2
(RMO)=c°N 53

where c is a constant of the order of the length of a segment.
In the © temperature region, from (1.2), (5.3) and (5.5)

a®=1+0-7292z +0O(z?), z<0-1, (59

where we have set T',/(c’x) = 1 toensure ¢ = 1 at 2 =0. Similarly from (1.2), (5 4) ang
(5.5), the result in the good-solvent region is

o =1-49482%[1+0-09922** +0(z™"*/%)], z>075. (53

The value of b determined in the calculation of A; has been used in (5.6) and (5.7,
and (1~ p,) has again been replaced by 1 to obtain the crossover form (1.3). Equations
(5.6) and (5.7) are again asymptotic expansions.

Figure 2 is a plot of (5.7) against z. Also shown are experimental data for the radigs
of gyration expansion factor of polystyrene in decalin (Berry 1966), and severa
non-renormalization group calculations, summarized by Yamakawa (1971). The
expansion factor calculated here applies to the end-to-end distance of the polymer
which is expected to be larger than that deduced from the radius of gyration (Yamakawa
et al 1966). The coefficient of z in (5.6) does not agree with the perturbation theory
values of 1-333 for the end-to-end distance expansion factor {Yamakawa 1971, § 13)or
1-276 for the radius of gyration expansion factor (Yamakawa 1971, § 14). Thisis,
perhaps, to be expected because the boundary conditions (4.2) and (5.2) are only the
leading terms in series in po(]) and the value of b derived from A, is only approximate.
The discrepancy at large z is larger than that expected merely from the difference
between the end-to-end distance and radius of gyration expansion factors (Yamakawa

T T T T
A
B
3 -
C
N D
> 3
2 B . L] . ¢ .T
i Il 1 31’ J })
Ve
are for the ﬁdi‘”?r

Figure 2. Plot of W(z) from equation (5.7) against z. The data points

gyration expansion factor of polystyrene in decalin (Berry 1966). Also shown for w‘rgz&
son are the results of the theories of the radius of gyration expansion factor of PﬁfS}’“ (m o
curve A; Flory (1949), curve B; Yamakawa and Tanaka (1967), curve C; th? m 63 ant
the Flory (1949) theory by Stockmayer (1960), curve D; and of Flory and Fisk (1969)

E.
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1966). This may also be ascribed to the crudeness of the boundary conditions and
sble défects in the definition of z assumed by Berry (1966) in the presentation of his
wa 1971, p 375). In addition marginal operators, like the |¢;|° in (2.1)

aka
:a;:n(:!iml (Wegner and Riedel 1973) may be a cause of some of the discrepancy.

aal

¢, The specific heat near the O temperature

The reduced specific heat C may be calculated from the partition function CN(u) as
C=d?In Cn(u)/d7?, 6.1

where 7 is the inverse temperature (Rapaport 1974).
Near the © temperature and in the good-solvent region Cy(u)~ N7 (I (u)™ for
large N (see (2.6)), and the dominant term in the reduced specific heat is just

C=-Nd&InJ(u)/dr* (6.2)

The first two terms of the series in u of J.(u) can be calculated from the renormaliza-
tion group equations (3.2) and (3.3), provided we retain the term in u?(l)in (3.2). The
equations to be solved are

drs/dl =2rs + Au— Aurs + Eu® (6.3)
du/dl =u~ Bu® (6.4)
where E is a constant. The critical fixed point of these equations is at (r¥, u*)=

(¢}, B™") where r¥= —(AB+E)/(2B*— AB). Dividing (6.3) by (6.4) and integrating
with respect to u gives r; as a function of u:

(A + Eu)(1—Bu)B&~2/5
du "

rs(u) = u*(1— Bu)“~?5"B I

= u*(1=Bu)**2/B (K + 1 (u) + () (6.5)

where K is a constant of integration and

_ (B—A)/B

filu) = f a2 Bu”f (6.6)
_ R, \(B-A)/B

= [ LB @

e?ihe only line in (r5, u) space which passes through both the critical and Gaussian
Pomnts has K = 0. This is the critical line upon which J; has its critical value J_(u).

Toting the values of rs and u on the critical line by r. and u,, (6.5) yields

re~ U+ Ful In u.+0(ud), (6.8)
ud .

Jdu) = J(0) + Gu+ Hu? In u+0(u), (6.9)
Viere F G and H are constants.

Substitus .
divﬂ:téssnmnng (6.9) in (6.2) shows that the reduced specific heat atthe © temperature
% Nln(1-/T). Rapaport (1974) has determined the;maximum specific
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heat of chains of finite N and suggests that C=N In N, which is consistent with (6.9)
(Ferdinand and Fisher 1967, Moore 1971). : :

7. Discussion

The theory developed in this paper has certain apparent defects. Firstly, the renormaj.
zation group equations (3.2) and (3.3) are valid only for small r;, but, in the subsequent
calculations, the boundary conditions (4.2), (4.14) and (5.2) have been taken at
15(1)=1. Secondly, (3.6) and (3.7) have had the experimental values of the exponents
inserted into them. Thus (3.6) and (3.7) should be viewed as the phenomenologiml
equations proposed by Riedel and Wegner (1974) and not as equations derived frop
systematic renormalization group procedures like the-e expansion. Thirdly, only the
leading terms of series in ,u,z(i) have been taken for the boundary values of x, G, and L,
with consequent inaccuracies in the second terms of (4.21) and (5.6) and both terms of
(4.24) and (5.7). Our attempts to improve the boundary values have either produced
undetermined constants within the theory, or nonsensical equations. (It should be
possible to choose boundary conditions to give an empirical fit to the data for both 4,
and a” both at small and large values of z, but a more revealing test of the theoryis to
determine the constants in the ®-temperature region, and predict the results at higher
temperatures, as done in this paper.) Fourthly, the @ temperature has been taken as
being analogous to a Gaussian fixed point. For a tricritical fixed point a term of the
order v|¢(x)|° should have been included in the Hamiltonian (3.1). Near the critical
fixed point v is an irrelevant field but near the tricritical fixed point it is a2 marginal field
for d =3. Thus we expect that logarithmic corrections are needed to our results near
the © temperature (Wegner and Riedel 1973).

We conclude that the approach of Riedel and Wegner (1974) to crossover problems
seems useful in the description of the properties of polymers in dilute solution. Inspite
of the semi-phenomenological nature of the method, quantitative predictions for a”
and A, inreasonable agreement with experiment have been obtained. The formof the
calculations is very close to thatin an € expansion taken to order e (Nelson and Rudnick
1975) (except where the coefficients in the differential equations were adjusted to give
the experimental values of the indices). Because systematic improvement of the
boundary conditions is not easy within the phenomenological Riedel-Wegner procz;
dure, we believe that further work using the € expansion directly but taken to O{deré
probably offers the best scope for further improvement. In an appendix, we give the
calculation of the crossover functions correct to order e. .

The predicted logarithmic divergence of the specific heat maximum of a single Fham
in solution as its molecular weight is increased could not have been made .@tbm
strict confines of an € expansion. The apparent existence of such a diverges™
(Rapaport 1974) is an argument for the utility of the semi-phenomenologica] appmdL
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Appendix

We shall give here the results of calculations, correct to order e, for the crossover
ons W(z) and X(z). The calculation is based on the work of Nelson and Rudnick

({1975) which is very similar in form to the Riedel-Wegner approach, except that no
p’tismade to adjust the coefficients in the equations for the scaling variables ((3.4)

d(3.5)) to obtain the experimentally known asymptotic behaviour. Stephen (1975)

s indeed already calculated the crossover function for a? using this procedure. His
resltis

T 1/4
—ENE/ 2) , (A1)

siere TCU+aglisc”™?, g is a numerical factor, and ugc®** corresponds to a
ree-particle potential between three links of the chain. If for d =3 or € = 1, we again
remove the unknown constants from a’ by demanding that its expansion in z matches

g with the leading term of the conventional expansion of a” in powers of z, (A.1)
becomes

o =(1+52) = W(2). (A.2)
for small z, (A.2) predicts
oP=1+32-822+%27 (A.3)

whereas the perturbation theory result is (Yamakawa 1971)
© a?=1+432-2-07522+6-4592° . ...

For large z, (A.2) gives, a®~2(z/3)"/*. The correct asymptotic dependence on z is
mobably closer to £, In the region of z-values accessible to experiment and plotted in
figwre 2, the expression (A..2) gives a good fit to the data.

_The crossover function for A, to order e is trivially evaluated from the expression
wich Nelson and Rudnick derive for the free energy. Itis

X(z)/z=(1+%2)7"2 . (A.4)
Forsmall z, (A.4) predicts

X(2)z=(1-%z+ ..)), (A.5)
moontrast to the exact result

X(z)/z=(1-2-865z+ ...). (A.6)

mﬁe that the leading term in z in (A.5) is at variance with the exact result, and that a

-auarproblem was encountered in the Riedel-Wegner calculation, where it was found

mﬁ;fo enspre'simultaneo'usly valid expansions for bgth the crossover functions
Wﬂectzt. This discrepancy is pot }.1ard to upderstand with an expanngon proc§d.ure

s oorder ¢, as t‘he termin z in (A.5) isreally a term of order i in the original
nof A,, and so is of order €>.

Forlarge , (A.4) takes the form
X(2)/z=(V3/4)z7V?, (A7)
<as thy

14 %PTO})able z dependence is as the —% power. However, in the range of
asin figure 1, (A.4) gives a very good fit to the data.
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It clearly would be of interest and value to extend these calculations to higher orer
in e
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