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A: Math. Gen., Vol. 9. NO. 3, 1976. Printed in Great Britain. @ 1976 LW. 

RenomaIization group calculation of polymer properties in 
date solution 

D J Burch and M A Moore 
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton 
BNl9QH. UK 

Received 18 August 1975, in final form 20 October 1975 

Abstract. The Riedel-Wegner phenomenological approach to crossover phenomena is 
used to calculate the temperature and molecular-weight dependence of the second vinal 
coefficient and expansion factor of polymers in dilute solution both near the 0 temperature 
and at higher temperatures. The specific heat maximum of a single polymer chain in 
solution is predicted to diverge logarithmically as its molecular weight goes to infinity. The 
0 temperature is assumed analogous to a tricritical point. It is shown that for problems 
involving the interaction of m polymers, one must work with an (m X n)-component field 
theory, and then take the limit n -* 0. 

’ibe properties of polymer chains in dilute solution have been extensively studied both 
experimentally and theoretically for many years. A recent survey is given in the book 
by Yamakawa (1971). Among the main topics of interest are a, the expansion factor of 
anisolatedpolymer and A2, the second coefficient in the virial expansion of the osmotic 
Pressure, and in this paper we shall use renormalization group methods to calculate 
bothofthem. The 0 temperature, the temperature at which the polymer chains behave 
ideally (and at which A2 therefore vanishes), is analogous to a tricritical point (de 

1975), and the exponents describing the behaviour at the 0 temperature have 
mean-field or random-walk values. At higher temperatures in the good-solvent 

!%On a critical or non-trivial fixed point becomes dominant with a consequent change 
inthevalues of the exponents. Both a and A2 can be written in terms of crossover 
bchs which interpolate between the 0 point and good-solvent regions. 

fie Polymer solution will be taken to be monodisperse, i.e. each polymer has the 
me molecular weight, M, corresponding to N flexible units. The molecular’weight 

of (S2) ,  the mean-square size of a single polymer chain is 

(S2) - MZu, as M+ 03. (1.1) 
At above the 0 temperature, in the good-solvent region, the exponent v &  

S. As the temperature of the solution is reduced, (S’) decreases and at the 0 
*ra% where the short-range repulsive (excluded-volume) interaction between 

is exactly balanced by longer-range attractive forces, the exponent v is 
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;-the random-walk value (Cotton eta! 1974). The expansion factor, a, isdefindby 

where (S’), is the mean-square size at the 0 temperature. For dilute solutions,a2may 
be expressed as a universal function of the excluded-volume parameter, - &I/Z 
where U is the effective interaction between the monomers, which varies with tem& 
hre ,  T, as (L-@/T) (Yamakawa 1971); i.e. 

a2= W(z).  (1.3) 
At the 0 temperature, z = 0 and W(0) = 1, but for large z, in the good-solvent regon, 
w(z) - ,P5, so as to recover (1. I) .  

The osmotic pressure, U, of a dilute polymer solution has a virial expansion in the 
concentration p (molecules/unit volume) of the polymer: 

n=kT(p+A2p2+A3p3+ . . .), (1.4) 
where the first term is just the ‘ideal gas’ term. A2 would be expected to be proportional 
to the volume from which one molecule is excluded by the presence of another, i.e. 
A2--(S2)3’2. In the good-solvent region this is found to be the case and so 

A2-M915, as M+m. (1.9 
However, as the temperature is lowered, A2 decreases and eventually vanishes at thee 
temperature. A2 may in fact be written as a universal function of z :  

(1.6) 

Near the 0 temperature X ( z )  - z, so A2 - (1  - O /  7‘)M2. For large 2, X ( z )  - z3” to be 
consistent with (1  S). 

The fact that both (S2) and A2 can be expressed in terms of two parameters ((5% 
and z) indicates that the details of the structure of polymer molecules are unimportant 
in dilute solutions. In concentrated solutions and solids, however, this is not the caseand 
features, such as side chains, chemical nature, etc (short-range interferences), of 
chains are important. 

The layout of this paper is as follows. In 3 2 we indicate how the n + 0 limit of an 
n-component field theory can be used to model a polymer chain (de Gennes 1972hmd 
how quantities familiar from magnetic systems are related to polymers (des Clo&aux 
1975). In particular, it is shown that correlation functions of the fields are generahng 
functions of polymer properties, and that the field-theoretic Hamiltonian describes a 
random walk for U = 0 and a self-avoiding walk for U +, 00. The generatingfUn&iOnsare 
written in a form reminiscent of magnetic critical phenomena and the reSulti0g 
exponents are shown to have the mean-field values for the random-walk case 
We show that the generalization of the original Hamiltonian of de Gennes (1972) to 
systems of m polymer chains requires the use of an (m x n)-component field. In8 the 
renormalization group approach is discussed. The functions W(z) and 

Point in the 0 temperature region and a critical fixed point in the good-solvent 
The renormalization group differential recursion relations to order E (where e 
and d is the dimensionality of space) are written in terms of scaling fields, an 

A2 = (S2)i’2f(z) = M’”X(z). 

interpreted as crossover functions, whose behaviours are governed by a tricriDcal 6x4 . 

5 4 - 6  
d, bY 
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h e  experimental values of the exponents into them we obtain the 
FDomenolo&A crossover equations proposed by Riedel and Wegner (1 974). In 0 4 
Ibe Rdel-Wegner method for obtaining thermodynamic quantities from the 
pbenomenological equations is closely followed to calculate Al. Unknown constants 

ng in the calculation are determined by matching the result in the 0 tempera- 
s m d l - ~ )  region to the results of perturbation theory calculations in z. The 
&ated values for A2 in the good-solvent (large-z) region are then found to agree 
wellwith experiment. By similar procedures c y 2  is obtained in § 5. The same values of 
banstants determined in § 4 are used, and it is found that the first-order perturbation 
tbeoryr&t for c y 2  in .z is not correctly obtained. The theory also does not fit the data 
@,.&& well in the high-temperature region. A discussion of the many possible 
"for these discrepancies is given. In 4 6 the specific heat of a single polymer near 
betemperature is calculated by determining the equation of the critical line from the 
remalization group equations. The specific heat is found to diverge as In( 1 - @/ T )  in 
hiofinite-molecular-weight limit which is in reasonable agreement with some numeri- 
~i results of Rapaport (1974). Finally, in 0 7, we review the model employed for 
treating dilute polymer solutions and the calculations we have presented. In particular, 
tbe phenomenological nature of the Riedel-Wegner equations is highlighted, and the 
dBculties encountered when trying to compare results obtained from them with 
+merit are noted. The role of marginal operators such as the '46' term in three 
dimensions is also discussed. In an appendix, we calculate W ( z )  and X(z) to order E 
Osing the results of Nelson and Rudnick (1975). This latter approach seems to have 
pterpossibilities of systematic extension than that of Riedel and Wegner, although in 
hw order its asymptotic predictions are in considerable error. 

srtiog 

2. n=O field theory and its magnetic analogy 

Et Gennes (1972) has shown that the limit n + 0 of an n-component field theory is 
fmally equivalent to a self-interacting chain, and hence to a single polymer in 
ahtion. Des Cloizeaux (1975) has extended this argument to polymer solutions at 
btemediate concentrations, and shown how the language used to describe magnetic 
W s m a y  also be useful for polymers. Following these authors we construct a lattice 
-1 Of the polymer solution, use the n + 0 limit and work with functions whose 
properties in the magnetic analogue are well known. 

Be lafiice-model field-theoretic effective Hamiltonian, H, is the O(n) symmetric 
form: 

kethere is a field variable, +I = (bf, .  . . ,&;) at each lattice site, i ;  P =(kT)-'; (8 
all pairs of nearest-neighbour lattice sites; J is the (dimensionless) 
interaction in magnetic language; and hi is an applied field. 

'he calculations of polymer properties are performed with the n-component 
htonianand the limit n + 0 is taken, usually, as the final step in the calculation. In ' l'lut J acts as a generating function parameter; U - (1 -0/7') describes the 
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interactions between monomers, and the properties of the polymer are given by tbc 
coefficients of the Taylor series expansion of the correlation functions in J. 

As an example, consider the correlation function 

is the generating function of the partition function, CN(U), of a polymer of NflexiMe 
units (de Gennes 1972, Burch and Moore 1976). When U =O, no interadom are 
present between the monomers and the chain is free to assume all the anfigurationsofa 
random walk. Thus CN(0) is just qN, the number of random walks of Nstepsonalah 
of coordination number q. The value of A in the Hamiltonian is determined byse@ 
C,(O) = 1, which gives A = 1. Thus 

x(J,O)=(l-qJ)-’ .  (2.4) 
Even for non-zero U, we expect from the magnetic analogue that the genera% 
function x(J, U )  will be of the form 

x(J,  U) - (1 - J/JC(u))-’, asJ+Jc(u),  (2.3 
which implies (McKenzie and Moore 1971) 

c N ( U )  -N’-’(Jc(U))-~,  as N + q  (2.6) 
where JC(u) is the singularity of x(J, U )  nearest the origin. For the random walk 
Jc(0) = 4-l and y = 1. 

As U + 00, h = - 4 6 ,  the chain configurations become restricted to those of a 
self-avoiding walk. In this limit the Hamiltonian becomes 

H =  J 1 i 4;4y+C i @hp, 
(ij) p = l  i p = l  

with the constraint at each lattice site, i, 

C &’&= n. 
n 

p = 1  

(2.7) 

(2.8) 

It is found by numerical methods that y = p  for the self-avoiding walk .in three 
dimensions (Martin et al 1967). 

The calculation of the second virial coefficient involves the interaction Of 
polymer chains. Each chain must be given its own generating function 
the field theory must be generalized to contain 2n components. For No 
labelled a and 6, the Hamiltonian becomes 

2n 

H = L C  i 4P4p+J/J 4;4y 
(i i)  p = l  ( i j )  p=n+l 

ntaio L 
In general, for systems of m polymer chains, the Hamiltonian mst a, 
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function parameters and be expressed in terms of an m x n-component field 

wfo&,wing correlation functions may be obtained from a study of the two- 
aaQBwg @ md Moore 1976). 

poly" Hamiltonian (2.9): 

(2.12) 

(2.13) 

G,(J,, U) =f  1 (+;+14?+1+;c1+;+1)c, (2.14) 

x(J, U) is independent of Jp in the limit n + 0 and vice versa. Thus the generating 
hmiionsx(Js, U), S = (Y or P, are identical to x(J, U) calculated from the one-polymer 
Hamiltonian (2.1). 

j k l  

The three forms of G4 are also useful generating functions: 

(2.17) 

Wecall CMN(U) the 'two-polymer interaction' function. It is related to the second virial 
mfiient, A*, of a monodisperse dilute polymer solution by 

A2 = C N . N ( U ) / C % U )  (2.18) 
a3cKende and Domb 1967). If the correct dependence of c I , N - I ( u )  on I and N - I  is 
Lwwn,then C M + ~ ( U )  can be deduced from gMCN(u). Field theories of two interacting 
Pbkx which do not contain 2n components and do not compensate for this 
'&nCY by the use of the (M+N)th term of the generating function G4(J,, U), 
p"dw results with the correct exponent dependence, but cannot be relied upon to 
Mmect numerical coefficients (Burch and Moore 1976). 

and CM,N(U) can be calculated from their generating functions by the inverse 
bansfoms: 

(2.19) 

(2.20) 
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TO find a2, one introduces the second moment Of the pair correIation hnai,, 
T,(J,, U), defined by 

(2.21) 

where Rii = Ri - Rj is the separation vector of sites i and j. The Taylor sene exp* 
is 

(2.22) 

(2.23) 
R 3 u )  is the square size of a particular configuration of N flexible units, and thesumis 
Over all such configurations. The mean-square size of a polymer of N flexible unitsk 
given by 

(Rk(u)) = a ~ ( u ) / C ~ ( u ) .  (2.24) 

AS Js+J.Au), 

rz(J,, U )  -(I - J ~ / J ~ ( u ) ) - ( ~ ~ + ~ )  (2.25) 

where U = f for the random walk and v = 5 for the self-avoiding walk in three dimensions 
(Domb 1969). For large N i t  follows from (2 .5) ,  (2.24) and (2.25) that 

(R 324)) - N2". (2.25) 

It should be noted that, in the limit n + 0, the singularity nearest the origin of all the 
generating functions is always Jc(u). 

3. The renormalization group approach 

The functions W(z)  and X ( z )  defined by (1.3) and (1.6) for the square of the exPa@ioo 
factor, a2, and the second virial coefficient, A*, are typical of situations inwhichbere! 
a crossover between the Gaussian fixed point and a non-trivial fixed point. 'Ik'' 
argument, the excluded-volume parameter, has the general form z - uM4' where* 
c"Ver exponent 4t is ~ / 2  for the Gaussian fixed point (Nelson and Rudnick 
which reduces to the value quoted (i.e. $) for d = 3. Since U = 0 at the 0 temPeraaie.a 
tricritical or Gaussian fixed point (de Gennes 1975) will govern the behaviour of? 
~OSSOVer functions W ( z )  and X ( z )  in the poor-solvent region, that is for smallz; 'Iuk 

ed the good-solvent, or large-z, region will be dominated by a non-trivial Or critical' 
point. 

The two-polymer Hamiltonian (2.9) may be written in the continuous limit as 
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~r~ rb ( 1  -js/Jc(0)). (3.1) is of the form of the anisotropic n-vector model investi- 
by Fisher and PfeUtY (1972). However, the renormalization group differential 

@tions for 1, and r, decouple in the n + 0 limit because the terms in the equation for, "", which involve r,are always multiplied by the factor n. For small is the equations -a a 
and describing how they change under a renormalization group scale change of 

drs(O - - - 2rs ( I )  + Au ( I )  - Au( I )  r, (I) + O( u2(I)) 
dl (3.2) 

&re U has been supposed to be of order E ,  and A = T-', B = 4 ~ - ~  (Nelson and 
R h C k  1975). Linearization of these equations about the Gaussian fixed point r: = 0, 
,,LO yields eigenvalues 2 and E .  Hence the crossover exponent Cpt = 4 2  (Fisher 
1974). 

'&ese equations may be written in terms of the usual scaling fields (Wegner 1972) 
~ , ~ ( l ) = r ~ ( l ) f A ~ ( 1 ) / ( 2 - ~ )  and p2(I) = ku( l ) ,  where k is a constant: 

(3.4) 

Since (3.2) is only correct to order E, we shall neglect the term in &(l) in (3.4), 
although for d = 3  ( E =  l), there is little justification in assuming this term is small. 
Without this term (3.4) and (3.5) are of identical form to the phenomenological 
equations proposed by Riedel and Wegner (1974) to describe crossover phenomena. 
Forthree-dimensional systems E = 1, and we shall choose B/k  = 1, so that the critical 
fixed point is at (pTs, &) = (0, 1). By linearizing (3.4) about the critical fixed point, the 
anelation length exponent, v,, associated with this fixed point is given by (2 - A / k ) - ' .  
However, we shall follow the phenomenological approach advocated by Riedel and 
Wegner (1974) and 'adjust' A to obtain the experimental value of 3 for U,. This is 
equivalent to setting A/k =$. Linearization of (3.4) about the Gaussian fixed point 
( 0 9 0 )  gives the mean-field value vt = f. 

'fhUs the phenomenological equations we shall use to calculate the crossover 
hdOns W(z) and X ( z )  are 

dCL1*(l)/dl= 2p,s(I)-fCL,s(0w2(I) (3.6) 

bti0ns(3.8) and (3.9) follow from the definition of p l s ( 0 )  in terms of r, and U. Jc(u) 
Value of .& for which p18  = 0. 
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4. The second virial coefficient 

4.1. The partition function, CN(u) 
To obtain CN(u) we must calculate the generating function ,y. This is a homogenmus 
function of the scaling fields p l S  and p2 such that 

X ( P ~ ~ ,  p2) = e2k(Pls(I), PZ(O), (4.1) 
where the small exponent 77 is neglected as it is of order e2, in which case y = 2,,, whn 
(4.1) follows. p l S  and pi are the starting (I =0) values of d I )  and p2(Q 

Equation (4.1) together with (3.6) and (3.7) allow the evaluation of the generating 
function ,y provided it is known at a ‘boundary’ outside the critical region where it can 
be computed by mean-field 0: some other appJoximate procedure. We shall take the 
boundary at the value of I = I for which pIs ( I )  = 1, and assume 

x(1, P2(fN =x (4.2) 

X(P1s. P2) = e”. (4.3) 

ft(C,,,> = (1 + c;;1’6/2f(c,,,))’/6 

where x is a constant independent of p2( b. In a more refiqed approximation one might 
replace the right-hand side of (4.2) by a power seriesin p2(1). Then, at the boundary 

fmay be determined in terms of plS and p2 by solving (3.6) at 1 = [which reduces to 

(4.4) 

solving either 

(4.51 

(4.6) 

(4.7) 

where 
c,,,= P ~ ~ ( I ) ( ~ -  P ~ ( W / ~ P ~ ( I ) - ~  (4.8) 

is a renormalization group invariant, i.e. dC,,Jdl= 0. 

powers of C;y’. Substitution in (4.5) then gives 
Near the Gaussian fixed point, Crls>> 1. In this limit (4.4) can be expanded 

er= p~; i /~(1  -p2)1/6(1 +~C;;~~+O(C;~J). (4.9) 

Similarly, near the critical fixed point CWla<< 1, and (4.6) and (4.7) produce 
r -315 1/5 3/5 (4.10) e =PIS P2 (1 +sc,,,+o(c;/15J). 

Inserting (4.9) and (4.3) and performing the inverse Laplace transform (2-19)9 we’din 
the poor-solvent region (that is, near the 0 temperature) 
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rhere 
X= (JAO)/JAU))(~ - 

Wlly in  the gd-solvent  region, we obtain from (4.10), (4.3) and (2.19) 
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(4.12) 

(4.13) 

%expression for C,!U) in (4.13) is of the form (2.6) but with yc=$ rather than the 
experimental value of a. The discrepancy arises because we have set q = 0 and so 
yc=2v,. 

42.  he two-polymer interaction function, CN,,(u) 

%calculation of CN,,(u) is similar to that for CN(u), but is complicated by the 
p e n c e  of the two scaling fields pln and fils. To clarify the situation we define new 
variables P ( I ) = ( ~ L ~ ~ ( ~ ) ~ I B ( I ) ) ~ ”  and A(I)= pla(l)-plB(Z), both of which satisfy the 
daferentialequation (3.6). G4 is a homogeneous function of the variables P( l ) ,  A( l )  and 
Irz(l), with 

(4.14) G4(R 4 PZ> =e7’G4(P(U7 40, ~ 2 ( 0 ) ,  

when the small exponent is neglected. (In general, G4 diverges as 5(4*d-2‘) 3 5 + a  
when& =Is, where 5 = the ‘coherence’ length.) 

We take the boundary at I = f given by P( f) = 1, and assume that, at this boundary, 

4(?)P2(?))= G&2(r)? (4.15) 

4ere G4 is a constant independent of A( ?) and pz( r). This boundary value for G4 can 
kenvisaged as being the leading term of a series in pz( r) and A( r). It is not easy to 
justlry (4.i5) except for the special case A = 0, when J, and J, are small and equal, so 
G a k  A([), pz( f)) becomes proportional to the ‘bare’ coupling constant in the Hamilto- 
h a n d  hence to p2(r) .  At the boundary (4.14) and (4.15) give 

GAP, A, p2) = e7i64p2( f). (4.16) 

Inasimilar fashion to the calculation of CN(u), the solutions of the differential 
W6on (3.6) for P( f) can be expressed near the Gaussian fixed point as 

(4.17) 

cP = ~ ( 1 -  pz(~>5 /3pz (~ ) -2 ,  (4.18) 

fievalue of pz( f) is obtainable from (4.18) for both large and small C p .  Near the 

p2(r) = CP1/2[1 -$y2+o(c;1)]. (4.19) 

 ais also a renormalization group invariant. 

Gaussian fixed point (at which Cp >> 1) one finds 
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A similar treatment for the good-solvent region (C, << 1) yields 

4.3 The second vinal coefficient, A2 

A2 for a monodisperse solution is calculated in the poor-solvent region by jnzmng 
(4.20) and (4.1 1) into (2.18). Thus near the 0 point 

In the good-solvent region, (4.21), (4.12) and (2.18) yield 

(4.23) 

Equations (4.22) and (4.23) are not in the crossover form of (1,6), unless we replace 
(1 - p2) by l - even  in the good-solvent region. We view the experimental evidence for 
(1.6) as a strong argument that p2= ku<< 1, in which case J,(u) =Jc(0)+O(pz). Near 
the 0 temperature, setting B2 = A2NA/M2,  where NA is Avogadro’s number,one has 

B Z M ~ / ~ / Z  =D(1-2*865~  +O(z2)) ,  z <0-1, (4.24) 

where D is a constant and z = bF2N1/’. The constant, b, has been adjusted sothatthe 
coefficient of z in (4.24) is the vaIue derived from perturbation theory (Yamakam 
1971,g 21a). Using this value of b( = 0.1719) in (4.23) produces, for the good-solvent 
region 

B2M1/*/z  = 0*381D~-~’~[ l  +0.0014~-6~5+Q(~-12/5)~ ,  z > 0.75. (4.25) 

Equations (4.24) and (4.25) are both asymptotic expansions. The sizes of the S U d v e  
terms in (4.24) are such that it is only valid for z <@I.  Inclusion of higher in 
(4.25) would only be justifiable when z > 9. 

Figure 1 is a plot of X(z)/z( = B 2 M 1 ’ 2 / D ~ )  against 2. Also shown is the eWrimeo- 
tal data for polystyrene in decalin (Berry 1966) and the internally consistent non- 

d renormalization group calculations of Flory and Krigbaum (1950) and &fino an 
H O r y  (1957), its modification by Stockmayer (1960), and of Kurata et (19’)‘ 
Yamakawa (1968) and Yamakawa and Tanaka (196:). (All of these theories are 
summarized by Yamakawa (1971).) The small discrepancy at large z is partly 
crudeness of the boundary conditions (4.2) and (4.15), which are only the leadingte; 
Of series expansions. Notice also that improvements in the boundary conditions 
alter the value of the constant b. Another possible Source of the small d i s ~ e p ~ c y a t  

may not be valid when T is not close to 0 (Yamakawa 1971, p 375). 
large z is that the relation U - (1 - @/ T), assumed by Berry (1966) in presenting kidam 
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L I I I I I 
00 2 4 

z 

Fignre 1. Plot of X ( z ) / z  against L. The data points are for polystyrene in decalin (Berry 
1966). The broken curve is an interpolation of (4.23) and (4.24) for 0.1 < z <0*75. Also 
shown for comparison are the results of the theories of Flory and Krigbaum (1950) and 
Orifino and Flory (1957), curve A; its modification by Stockmayer (1960), curve B; and of 
Kurata er a1 (1964), Yamakawa (1968) and Yamakawa and Tanaka (1967), curve C. 

Z lbe expansion factor 

61. %mean-square size, ( R ~ U ) )  

kcorrelation function r2, needed to obtain (RL(u)),  will also be a homogeneous 
fnnction of the scaling fields: 

r 2 h ,  p2) = e 4 ' r z ( d l ) ,  pZ(l)), (5.1) 

Ying the Riedel-Wegner procedure, the boundary value for r2(p16 (I), p2(1)) at 
&re the small exponent 7 is again neglected (see (2.25)). 

I= I is taken as 

rZ(1, P2(f)) = TZ, (5.2) 

*reFzisaconstant, which again might represent the leading term of a series in d b .  
h C k n  Cdu) in 0 4.1. In the 0 temperature region 

fiecalculation of a,(u), defined by (2.22), now follows exactly that of the partition 

me at higher temperatures 

(RaU))inbothregions may now be found by dividing the expressions (5.3) and (5.4) for 
@") by(4-11) and (4.13) for C,(u) respectively, according to (2.24). 
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5.2. The square of the expansion factor, a’ 
The value of ( R a u ) )  at the 8 temperature has the form 

( R 2 0 ) )  = c2N 

where c is a constant of the order of the length of a segment. 
In the 0 temperature region, from (1.2), (5.3) and (5.5) 

6.b)  
where we have set F2/(c2,f) = 1 to ensure a’ = 1 at z = 0. Similarly from (14, ( 5 . 4 1 ~  
(5 .3 ,  the result in the good-solvent region is 

a2 = 1 * 4 9 4 8 ~ ~ ’ ~ [ 1 + 0 . 0 9 9 2 ~ - ~ ’ ~ + 0 ( ~ - ’ ~ ’ ~ ) ] ,  2>0*75. (5.7) 
The value of b determined in the calculation of A2 has been used in (5.6) and (5.7, 

and (1 - p2) has again been replaced by 1 to obtain the crossover form (1.3). quatiom 
(5.6) and (5.7) are again asymptotic expansions. 

Figure 2 is a plot of (5.7) against z. Also shown are experimental data for theradja 
of gyration expansion factor of polystyrene in decalin (Berry 1966), and several 
non-renormalization group calculations, summarized by Yamakawa (1971).  he 
expansion factor calculated here applies to the end-to-end distance of the polymer 
which is expected to be larger than that deduced from the radius of gyration (Yamakawa 
et a1 1966). The coefficient of z in (5.6) does not agree with the perturbation theory 
values of 1.333 for the end-to-end distance expansion factor (Yamakawa 1971,i 13)or 
1.276 for the radius of gyration expansion factor (Yamakawa 1971, 8 14). This is, 
perhaps, to be expected because the boundary conditions (4.2) and (5.2) are onlythe 
leading terms in series in p2( f )  and the value of b derived from A2 is only approximate. 
The discrepancy at large z is larger than that expected merely from the differenee 
between the end-to-end distance and radius of gyration expansion factors (Yamakaa 

a*= 1 + 0 * 7 2 9 2 ~ + 0 ( ~ ~ ) ,  2 CO.1, 
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dd 1966). 
POSD dam(Ymakawa 1971, p 375). In addition marginal operators, like the 
dn = 1 (Wegner and Riedel 1973) may be a cause of some of the discrepancy. 

may also be ascribed to the crudeness of the boundary conditions and 
*bledefectsin the definition of z assumed by Berry (1966) in the presentation of his 

in (2.1) 

Q. 

mrduced specific heat C may be calculated from the partition function C,(u) as 

heat near the 8 temperature 

C=d’ In C,(u)/d?, (6.1) 

M e  7 is the inverse temperature (Rapaport 1974). 

large N (see (2.6)), and the dominant term in the reduced specific heat is just 
Nearthe 0 temperature and in the good-solvent region C,(u) -W-’(J,(U))-~ for 

C = - N d2 In J,( u)/dT’. (6.2) 

Tfiefirst two terms of the series in U of &(U) can be calculated from the renormaliza- 
tiongroupequations (3.2) and (3.3), provided we retain the term in u’(1) in (3.2). The 
equations to be solved are 

drs/dl =2rs+Au-Aurs+Eu2 (6.3) 

du/dl= U - Bu’ (6.4) 

where E is a constant. The critical fixed point of these equations is at ( r z ,  U*) = 
(r:,B-*) where rr = -(AB +E)/(2B2-AB). Dividing (6.3) by (6.4) and integrating 
ihrespect to U gives r, as a function of U: 

= 1 - BU)(A-ZB)/B (K+f,(u) f f z b ) )  
where K is a constant of integration and 

(6.5) 

ne only line in (I*, U) space which passes through both the critical and Gaussian 
hedPints has K =  0. This is the critical line upon which Js has its critical value &(U). 
Denoting the values of r, and U on the critical line by r, and U,, (6.5) yields 

~ , - u , + F u , ~  In u , + ~ ( u f ) ,  (6.8) 
and 

*re 6 G and H are constants. 
(6.9) in (6.2) shows that the reduced specific he? atye @ temperature 

“‘es as N In (1 - @/ r). Rapaport (1 974) has determined t k s a x i m u m  specific 
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heat of chains of finite N and suggests that c 2. N In N, which is consistent with (6 9) 
(Ferdinand and Fisher 1967, Moore 1971). 

7. Discussion 

The theory developed in this paper has certain apparent defects. Firstly, the renorm&- 
zation group equations (3.2) and (3.3) are valid only for small r,, but, in the 
calculations, the boundary conditions (4.21, (4.14) and (5.2) have been taken at 
pIs(f) = 1. Secondly, (3.6) and (3.7) have had the experimental valuesoftheexpanents 
inserted into them. Thus (3.6) and (3.7) should be viewed as the phenomenological 
equations proposed by Riedel and Wegner (1974) and not as equations derived from 
systematic renormalization group procedures like the E expansion. Thirdly, only 
leading terms of series in p2( f )  have been taken for the boundary values of x, G4 mdr,, 
with consequent inaccuracies in the second terms of (4.21) and (5.6) and both temd 
(4.24) and (5.7). Our attempts to improve the boundary values have either p r o d u d  
undetermined constants within the theory, or nonsensical equations. (It should be 
possible to choose boundary conditions to give an empirical fit to the data for both 
and a2 both at small and large values of 2, but a more revealing test of the theory is to 
determine the constants in the @-temperature region, and predict the results at higher 
temperatures, as done in this paper.) Fourthly, the 0 temperature has been taken as 
being analogous to a Gaussian fixed point. For a tricritical fixed point a term of the 
order ~14(n)1~ should have been included in the Hamiltonian (3.1). Near the cririd 
k e d  point U is an irrelevant field but near the tricritical fixed point it is a marginal field 
for d = 3. Thus we expect that logarithmic corrections are needed to our results near 
the 0 temperature (Wegner and Riedel 1973). 

We conclude that the approach of Riedel and Wegner (1974) to crossover problems 
seems useful in the description of the properties of polymers in dilute solution. Inspite 
of the semi-phenomenological nature of the method, quantitative predictions for 0' 
and A2 in reasonable agreement with experiment have been obtained. The formofthe 
calculations is very close to that in an E expansion taken to order E (Nelson and Rudnick 
1975) (except where the coefficients in the differential equations were adjusted to @e 
the experimental values of the indices). Because systematic improvement of the 
boundary conditions is not easy within the phenomenological Riedel-Wegner Po&; 
dure, we believe that further work using the E expansion directly but taken to order c- 
probably offers the best scope for further improvement. In an appendix, we give he 
calculation of the crossover functions correct to order E.  

The predicted logarithmic divergence of the specific heat maximum of a sidechaio 
in solution as its molecular weight is increased could not have been made within 
strict confines of an E expansion. The apparent existence of such a 
(Rapaport 1974) is an argument for the utility of the semi-phenomenolO~~aPproa* 
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Weshall give here the results of calculations, correct to order E,  for the crossover 
~ ( z )  and X ( z ) .  The calculation is based on the work of Nelson and Rudnick 

(1915), is very similar in form to the Riedel-Wegner approach, except that no 
tkmade to adjust the coefficients in the equations for the scaling variables ((3.4) @P 

d(3.5)) to obtain the experimentally known asymptotic behaviour. Stephen (1975) 
@deed already calculated the crossover function for a' using this procedure. His 

tonctions 

Rsoltis 

zau+adu6c2-d, ffd is a numerical factor, and u ~ c ~ - ~ ~  corresponds to a 
w . p c l e  potential between three links of the chain. If for d = 3 or E = 1, we again 
remove the unknown constants from cr2 by demanding that its expansion in z matches 
opwith the leading term of the conventional expansion of cy2 in powers of 2, (A.l) 
b" 

J = ( l  +$2)1/4= W Z ) .  (A.2) 

Forsmall I, (A.2) predicts 
... (A.3) 

& ~ m  the perturbation theory result is (Yamakawa 1971) 

( r 2 = 1 + ~ z - 2 . 0 7 5 ~ 2 + 6 . 4 5 9 ~ 3 . .  . . 
Foriarge z, (A.2) gives, a ' -2 (~ /3 ) ' /~ .  The correct asymptotic dependence on z is 
probablycloser to 3. In the region of z-values accessible to experiment and plotted in 
h 2 ,  the expression (A.2) gives a good fit to the data. 

ne crossover function for A2 to order E is trivially evaluated from the expression 
aNelson and Rudnick derive for the free energy. It is 

fh"1 Z, (A.4) predicts 
X(z)/z = (1 +$z)-1/2. (A.4) 

X(z ) / z=( l -$z+ .  . .), (A.5) 

x ( Z ) / Z  = (1 - 2.8652 + . . .). (A.6) 

mantrast to the exact result 

 atha hat the leading term in 2 in (A.5) is at variance with the exact result, and that a 
pmilarPr0blem was encountered in the Riedel-Wegner calculation, where it was found 
W i b k  to ensure simultaneously valid expansions for both the crossover functions 
O f Q Z a n d &  This discrepancy is not hard to understand with an expansion procedure 
qcorreatoorder E,  as the term in z in (AS) is really a term of order i i f  in the original 
wation Of Az, and so is of order E'. 

For large Z, (A.4) takes the form 

X(Z)/Z = (J3/4)z-1/2, (A.7) 
*cas the Probable z dependence is as the -2 power. However, in the range of 
2'yatuese5 as in figure 1, (A.4) gives a very good fit to the data. 
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It clearly would be of interest and value to extend these dculations to higherorda 
in E. 
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